

ARSDK Protocols

Parrot SA

November 4, 2015

2

Contents

Purpose of this document 6

Conventions 6

Data endianness . 6

1 ARDiscovery protocol 8

1.1 Discovery . 8

1.1.1 Wifi . 8

1.1.2 BLE . 9

1.2 Connection . 10

1.2.1 Wifi . 10

1.2.2 BLE . 11

2 ARNetworkAL protocol 12

2.1 Wifi . 12

2.1.1 Data types . 12

2.1.2 Target Buffer IDs . 13

2.1.3 Sequence number . 13

2.1.4 Multiple frames in one packet 14

2.1.5 Disconnection detection 14

2.2 BLE . 14

2.2.1 Data types . 15

2.2.2 Characteristic IDs . 15

2.2.3 Sequence number . 16

3

3 ARNetwork protocol 17

3.1 Definition of a Buffer . 17

3.2 Internal buffers . 18

3.3 Acknowledge buffers . 18

3.4 Per device buffers . 19

3.4.1 Bebop Drone & SkyController 19

3.4.2 Jumping Sumo, Jumping Night & Jumping Race . . . 22

3.4.3 Rolling Spider, Hydrofoil, Airborne Night & Airborne
Cargo . 26

4 ARCommands protocol 28

4.1 Command identifier . 28

4.2 Command arguments . 28

4.3 Commands definition . 28

4.3.1 The SkyController case 29

4.4 Command attributes . 30

4.4.1 buffer . 30

4.4.2 timeout . 30

4.4.3 listtype . 31

4.5 Commands list . 31

4.5.1 Common.Settings.AllSettings &
Common.Common.AllStates 31

4.5.2 Common.Common.CurrentDate &
Common.Common.CurrentTime 32

4.5.3 ARDrone3.MediaStreaming.VideoEnable &
JumpingSumo.MediaStreaming.VideoEnable 32

4.6 Using the ARCommandsParser to generate your own code . . 33

4

5 ARStream protocol 34

5.1 Terminology . 34

5.2 Data . 34

5.3 Acknowledges . 35

5

Purpose of this document

This document describes the binary protocols used by the ARSDK 3, and
specifically by the ARNetworkAL, ARNetwork, ARDiscovery, ARStream and
ARCommands libraries.

This document is made for people who want to implement an ARSDK-
compatible framework, without reading all the ARSDK source code and
trying to figure out “how it works”

Conventions

In this document, products are referred to by their network connection type,
rather by their name, so the Bebop Drone and Jumping Sumo (and variants)
are “Wifi products”, while the Rolling Spider (and variants) is a “BLE
product”. If something is specific to a given product, its name will be
written directly.

The connection is done between a controller (the computer, phone, tablet
...) and a device (the Bebop Drone, Rolling Spider ...). In the libraries,
some objects are called “c2d” or “d2c”, these notations means “controller
to device” and “device to controller”, respectively.

Inside the ARSDK, the products are sometimes called with other names
than the actual product name. Here is a simple list of ARSDK alternative
names for real names, which should help when reading the ARSDK source
code:

Real Name Alternatives

Bebop Drone ARDrone, ARDrone 3

Jumping Sumo JS

Rolling Spider MiniDrone, RS

SkyController SC

Airborne Night MiniDroneEvoLight

Airborne Cargo MiniDroneEvoBrick

Hydrofoil MiniDroneEvoHydrofoil

Jumping Night JSEvoLight

Jumping Race JSEvoRace

Table 1: Name correspondence between product names and ARSDK internal
names

6

Data endianness

For the ARNetwork, ARNetworkAL, ARStream and ARCommands library, all
the data are sent on network in LITTLE ENDIAN byte order. This is done
because most of the devices actually are in LITTLE ENDIAN mode, and
thus avoids a lot of byteswapping.

The ARSAL library provides conversion macros (similar to the htonl()-
family) in the
<SDK>/libARSAL/Includes/libARSAL/ARSAL_Endianness.h file.

7

http://github.com/Parrot-Developers/libARSAL/blob/master/Includes/libARSAL/ARSAL_Endianness.h

1 ARDiscovery protocol

The ARDiscovery library is separated in two parts: Discovery, and Con-
nection. The Discovery part is in charge of discovering the devices on the
network (for Wifi products) or nearby (for BLE Products), while the Con-
nection part is responsible for negociating the connection parameters (which
are used by the ARNetworkAL library, among others)

1.1 Discovery

1.1.1 Wifi

The ARSDK Wifi Products use the mDNS protocol to advertise themselves
on the wifi network. You can use any compatible implementation (Apple
Bonjour, Avahi, Android NSDManager...) to discover the products.

The service types for the different products are:

Product Name Service Type

Bebop Drone ._arsdk-0901._udp

Jumping Sumo ._arsdk-0902._udp

SkyController ._arsdk-0903._udp

Jumping Night ._arsdk-0905._udp

Jumping Race ._arsdk-0906._udp

Table 2: mDNS Service type for the Wifi Products

These identifiers can be found in the
<SDK>/libARDiscovery/Sources/ARDISCOVERY_Discovery.c file.

You can find the following information from the mDNS Service:

Information Source Description

Name Service Name Display name of the product

IP Service resolution IP address of the product

Port Service port Discovery Connection port

Extras Service TxtData A json string containing extra informations
(currently contains the product serial number)

Table 3: Informations available in the mDNS service

8

https://en.wikipedia.org/wiki/Multicast_DNS
http://github.com/Parrot-Developers/libARDiscovery/blob/master/Sources/ARDISCOVERY_Discovery.c

1.1.2 BLE

To identify ARSDK BLE Products, you need to get the product Advertising
Data. You can use any BLE-Compliant implementation to do this (bluez,
Apple CoreBluetooth, Android BluetoothAdapter...).

In the manufacturer specific data part of the advertising data, the first
6 bytes should be the following:

• Vendor ID (2 bytes) : 0x0043 (Parrot Bluetooth ID)

• USB Vendor ID (2 bytes) : 0x19cf (Parrot USB ID)

• USB Product ID (2 bytes) : Depends on product

Product Name USB Product ID

Rolling Spider 0x0900

Airborne Night 0x0907

Airborne Cargo 0x0909

Hydrofoil 0x090a

Table 4: USB Product IDs of BLE Products

These identifiers can be found in the
<SDK>/libARDiscovery/Sources/ARDISCOVERY_Discovery.c file.

9

http://github.com/Parrot-Developers/libARDiscovery/blob/master/Sources/ARDISCOVERY_Discovery.c

1.2 Connection

1.2.1 Wifi

For wifi products, further negociation is needed: this is done over a TCP
socket, using the mDNS Service port.

To negociate the connection, connect a socket to this TCP port, and
send a JSON string containing the following informations:

Key Mandatory Description

d2c_port Yes The UDP port you will use to read data

controller_type Yes The type of the controller
(e.g. “Phone”, “Tablet”...)

controller_name Yes The name of the controller
(e.g. Application name)

device_id No The product serial number

Table 5: Available keys for connection JSON

Here is an example of a valid connection JSON string:
{ "d2c port":43210, "controller type":"Phone",

"controller name":"com.example.arsdkapp" }

The ‘‘device_id’’ field is useful when reconnecting to a product: If
a product receives a connection request with the ‘‘device_id’’ field, the
connection will only be accepted if it matches the product serial number.

10

The device will answer a connection request with anoter JSON string
sent on the same TCP socket. This response JSON string can contain the
following information:

Key Mandatory Description

status Yes If different from 0, it means that the
connection is refused (see below)

c2d_port Yes The UDP port you will send data to
(If the connection is refused, this value will be 0)

arstream_fragment No The size of ARStream fragments
_size

arstream_fragment No The maximum number of ARStream fragments
_maximum_number per video frame.

arstream_max_ No The maximum time between ARStream ACKs
ack_interval

c2d_update_port Yes The FTP port for updating the product

c2d_user_port No Another FTP port for other uses

skycontroller SC only The SkyController version
_version

Table 6: Available keys for connection answer JSON

Here is an example of a valid connection answer JSON string:
{ "status":0, "c2d port":54321,

"arstream fragment size":65000,

"arstream fragment maximum number":4,

"arstream max ack interval":-1, "c2d update port":51,

"c2d user port":61 }

If the status field is not 0, then it is an eARDISCOVERY_ERROR enum
value. These values can be found in the
<SDK>/libARDiscovery/Includes/libARDiscovery/ARDISCOVERY_Error.h

file.

1.2.2 BLE

There is no Connection part for BLE products. Just use your BLE adapter
methods to connect to the device. Product pairing is not required for BLE
connectivity.

11

http://github.com/Parrot-Developers/libARDiscovery/blob/master/Includes/libARDiscovery/ARDISCOVERY_Error.h

2 ARNetworkAL protocol

The ARNetworkAL library is responsible for the network abstraction of the
ARNetwork library. Both libraries are really tied together, and the structure
of a network packet is composed of header from both, but for the sake of
clarity, this section will describe the entire ARNetworkAL+ARNetwork head-
ers.

Naming conventions: The full block of data sent by ARNetworkAL is called
a packet. A packet is composed of one or more frame. Each frame is com-
posed of an header (Described in this section), and some data (Described
in either ARCommand or ARStream section).

2.1 Wifi

On Wifi network, a packet is sent on an UDP socket, and corresponds to an
UDP packet. The destination ports were negotiated during the ARDiscovery.Connection,
and the sending ports are free.

A packet can contain multiple frames. frames are simply added one
after another in the UDP packet.

A frame contains the following information:

• Data type (1 byte)

• Target buffer ID (1 byte)

• Sequence number (1 byte)

• Total size of the frame (4 bytes, Little endian)

• Actual data (N bytes)

2.1.1 Data types

The ARNetworkAL library supports 4 types of data:

• Ack(1): Acknowledgment of previously received data

• Data(2): Normal data (no ack requested)

12

• Low latency data(3): Treated as normal data on the network, but are
given higher priority internally

• Data with ack(4): Data requesting an ack. The receiver must send an
ack for this data !

The full list of data types can be found in the
<SDK>/libARNetworkAL/Include/libARNetworkAL/ARNETWORKAL_Frame.h

file.

To acknowledge data, simply send back a frame with the Ack data type,
a buffer ID of 128+Data_Buffer_ID, and the data sequence number as the
data.
E.g. : To acknowledge the frame "(hex) 04 0b 42 0b000000 12345678",
you will need to send a frame like "(hex) 01 8b 01 08000000 42"

2.1.2 Target Buffer IDs

Buffers IDs are separated into three main sections:

• [0; 9]: Reserved values for ARNetwork internal use.

• [10; 127]: Data buffers.

• [128; 255]: Acknowledge buffers.

By convention, Controller to Product buffers starts at 10 and grow up,
while Product to Controller buffers starts at 127 and go down. A buffer
number can be used in both direction.

A complete description of the buffers will be done in the ARNetwork

section.

2.1.3 Sequence number

Each buffer has its own independant sequence number, which should be
increased on new data send, but not on retries. The ARNetwork library will
ignore out of order and duplicate data, but will still send Acks for them
if requested. If the back-gap in sequence number is too high (we use 10
in ARNetwork library), then the frame is not considered out of order, and
instead is accepted as the new reference sequence number.

13

http://github.com/Parrot-Developers/libARNetworkAL/blob/master/Include/libARNetworkAL/ARNETWORKAL_Frame.h

2.1.4 Multiple frames in one packet

The packet "(hex)01ba270800000042020bc30b00000012345678" can be
split in the follwing way:

• Read the type of the first frame: (0x01), or Ack

• Read the buffer id of the first frame: (0xba)

• Read the size of the first frame: 0x00000008 (written in human read-
able endian): 7 bytes of header + 1 byte of data

• Read the data of the first frame: 0x42

• Since there is remaining data in the buffer, start again the process for
a second frame

For this exmample, we have an ack for buffer 0x0a, sequence number
0x42, and non acknowelged data for buffer 0x0b, with content 0x78563412.

The ARNetworkAL/ARNetwork libraries should never send ill-formed pack-
ets (i.e. every packet you receive consists of [1..N] frames, without garbage
data at the end. These libraries are ill-formed packets resistant: Before
reading a frame, we make sure that there is at least 7 bytes of data remain-
ing in the buffer, before reading data, we make sure that there is at least
data_size - 7 bytes of data in the buffer, and so on.

2.1.5 Disconnection detection

The ARNetworkAL library will consider the remote to be disconnected if no
data was read from the socket for the last 5 seconds.

2.2 BLE

On BLE networks, a packet will only encapsulate a single frame. A frame

is caracterized by the BLE characteristic address it belongs to.

A frame contains the following information:

• Data type (1 byte)

• Sequence number (1 byte)

• Actual data (up to 18 bytes)

14

2.2.1 Data types

The ARNetworkAL library supports 4 types of data:

• Ack(1): Acknowledgment of previously received data

• Data(2): Normal data (no ack requested)

• Low latency data(3): Treated as normal data on the network, but are
given higher priority internally

• Data with ack(4): Data requesting an ack. The receiver must send an
ack for this data unit!

The full list of data types can be found in the
<SDK>/libARNetworkAL/Include/libARNetworkAL/ARNETWORKAL_Frame.h

file.

To acknowledge a data unit, simply send back a frame with the Ack
data type, to the characteristic of id 16+characteristic_id, and the data
sequence number as the data.
E.g. : To acknowledge the frame "(hex) 04 42 12345678" in characteris-
tic 0xf00a, you will need to send a frame like "(hex) 01 01 42" in char-
acteristic 0xf01a.

2.2.2 Characteristic IDs

The products should declare 32 characteristics for ARNetwork, plus 2 for
ftp-like purpose (update, media download...).

The ARNetwork characteristics are numbered from 0xf000 to 0xf01f.
They will be referred as 0 to 31 (just add 0xf000 to get the real id).

Characteristics are separated into three sections:

• [0; 9]: Reserved for ARNetwork internal use.

• [10; 15]: Data.

• [16; 31]: Acknowledges.

By convention, the Controller to Product characteristics start a 10 and
grow upward, while the Product to Controller characteristics start at 15 an

15

http://github.com/Parrot-Developers/libARNetworkAL/blob/master/Include/libARNetworkAL/ARNETWORKAL_Frame.h

grow downward. A characteristic can be used for two-way communication,
but that is not advised (and not used on products).

The two characteristics for ftp-like transmission (using ARDataTransfer

library) are 0xfd23 and 0xfd53.

2.2.3 Sequence number

Each characteristic has its own independent sequence number, which should
be increased on new data send, but not on retries. The ARNetwork library
will ignore out of order and duplicate data, but will still send Acks for them
if requested. If the back-gap in sequence number is too high (we use 10
in ARNetwork library), then the frame is not considered out of order, and
instead is accepted as the new reference sequence number.

16

3 ARNetwork protocol

Each product has its own ARNetwork configuration. This configuration de-
fines the number, type and direction of multiple buffers. For BLE products,
each buffer is mapped on a characteristic, for wifi product, the buffer ids are
sent inside the ARNetworkAL packets.

3.1 Definition of a Buffer

From an external point of view, a buffer is a fifo which will be duplicated on
the remote end. Each buffer has 8 parameters. Some of these parameters
are for internal use only, while some have an effect on the binary data
transmitted on network. The parameters are:

Parameter Type Description

ID int The ID of the buffer
([0-255] for wifi, [0-31] for BLE)

dataType eARNETWORKAL_FRAME_TYPE The type of the buffer
This type will be sent in the ARNetworkAL frames.

sendingWaitTimeMs int Deprecated (use 0)
ackTimeoutMs int Time (in milliseconds) before considering a frame lost

(Only used for acknowledged buffers)

numberOfRetry int Number of retries before considering a frame lost
(Only used for acknowledged buffers)

numberOfCell int32_t Size of the internal fifos

dataCopyMaxSize int32_t Maximum size of an element in the fifo

isOverwriting int Boolean value indicating what to do when
data is received while the fifo is full

Table 7: Parameters for an ARNetwork buffer

The full configuration parameters for ARNetwork buffers can be found in
<SDK>/libARNetwork/Includes/libARNetwork/ARNETWORK_IOBufferParam.h.

Each buffer is unidirectional (i.e. can be used to send or receive data, not
both), but it is possible to have two buffers (one in each direction) sharing
the same ID. Buffers are thus separated in the “sending” and “receiving”
buffers list for each product.

On these parameters, only ID and dataType are actually sent on net-
work. The other ones only dictate the ARNetwork internal behavior for these
buffers. External implementations should follow this behavior too.

In reception buffers, the dataCopyMaxSize parameter indicates the max-
imum size of data (excluding ARNetworkAL header) that can be read by the
library. If a buffer is defined with a dataCopyMaxSize of 128 in the product,
then it will be unable to read a data of 129 or more bytes.

17

http://github.com/Parrot-Developers/libARNetwork/blob/master/Includes/libARNetwork/ARNETWORK_IOBufferParam.h

For emission buffers, the isOverwriting parameter dictates whether
trying to send a data while the sending fifo is full will do a drop of an old
data, or a refusal of the new data. For reception buffers, it has almost the
same effects, except that refused acknowledged data are NOT acknowledged
to the sender (so the sender might retry them later, when the buffer is no
longer full).

For BLE Networks, the ID is converted to a characteristic number by
adding 0xf000.

3.2 Internal buffers

Regardless of the network type, the buffer with ID 0 to 9 are reserved for
ARNetwork internal use. The current implementation uses buffers 0 and 1
to implement a ping with the following protocol:

• Send a struct timespec of the current time to buffer 0

• Wait for reception of the same struct timespec on buffer 1

• Calculate the difference to estimate the ping

For this to work, the remote end should immediately send the data
on buffer 1 when something is received on buffer 0. If the remote does
not implement it, then the estimated latency will always be 1sec, with no
further effect on the product. (TL;DR : It is not mandatory for a custom
implementation to do this)

This function is disabled on BLE networks, to avoid sending useless
packets.

Buffers from 2 to 9 are reserved for future use.

3.3 Acknowledge buffers

Acknowledge buffers are automatically created by ARNetwork for each buffer
(regardless of their type) with the following configuration:
{
.ID = baseId + 128; // (+16 for BLE)

.dataType = ARNETWORKAL FRAME TYPE ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

18

.numberOfRetries = 0; // Unused

.numberOfCell = 1; // Never more than one ack at a time

.dataCopyMaxSize = 1; // One byte of data: the sequence number

.isOverwriting = 0; // Useless by design: there is only one ack

waiting at a time

}

Acknowledge buffers of sending buffers are added to the receiving buffers
list, while acknowledge buffers for receiving buffers are added to the sending
buffers list.

3.4 Per device buffers

3.4.1 Bebop Drone & SkyController

The Bebop Drone and the SkyController share the same buffer configuration:

Controller to Device buffers

• Non ack data (periodic commands for piloting and camera orienta-
tion).
This buffers transports ARCommands.
{
.ID = 10

.dataType = ARNETWORKAL FRAME TYPE DATA;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 2; // PCMD + Camera

.dataCopyMaxSize = 128;

.isOverwriting = 1; // Periodic data: most recent is better

}

• Ack data (Events, settings ...).
This buffers transports ARCommands.
{
.ID = 11

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = 5;

.numberOfCell = 20;

19

.dataCopyMaxSize = 128;

.isOverwriting = 0; // Events should not be dropped

}

• Emergency data (Emergency command only).
This buffers transports ARCommands.
{
.ID = 12

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = -1; // Infinite

.numberOfCell = 1;

.dataCopyMaxSize = 128;

.isOverwriting = 0; // Events should not be dropped

}

• ARStream video acks.
This buffers transports ARStream data.
{
.ID = 13

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 1000; // Enough space ...

.dataCopyMaxSize = 18; // Size of an ack packet

.isOverwriting = 1; // New is always better!

}

Device to Controller buffers

• Non ack data (periodic reports from the device).
This buffers transports ARCommands.
{
.ID = 127

.dataType = ARNETWORKAL FRAME TYPE DATA;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 20;

.dataCopyMaxSize = 128;

.isOverwriting = 1; // Periodic data: most recent is better

}

20

• Ack data (Events, settings ...).
This buffers transports ARCommands.
{
.ID = 126

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = 5;

.numberOfCell = 256;

.dataCopyMaxSize = 128;

.isOverwriting = 0; // Events should not be dropped

}

• ARStream video data.
This buffers transports ARStream data.
{
.ID = 125

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = <arstream fragment maximum number>*2;

// Read from ARDiscovery.Discovery part !

.dataCopyMaxSize = <arstream fragment size>;

// Read from ARDiscovery.Discovery part !

.isOverwriting = 1; // New is always better!

}

21

3.4.2 Jumping Sumo, Jumping Night & Jumping Race

The Jumping Sumo, the Jumping Night and the Jumping Race share the
same buffer configuration:

Controller to Device buffers

• Non ack data (periodic commands for piloting).
This buffers transports ARCommands.
{
.ID = 10

.dataType = ARNETWORKAL FRAME TYPE DATA;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 1;

.dataCopyMaxSize = 128;

.isOverwriting = 1; // Periodic data: most recent is better

}

• Ack data (Events, settings ...).
This buffers transports ARCommands.
{
.ID = 11

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = 5;

.numberOfCell = 20;

.dataCopyMaxSize = 128;

.isOverwriting = 0; // Events should not be dropped

}

• ARStream video acks.
This buffers transports ARStream data.
{
.ID = 13

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 1000; // Enough space ...

.dataCopyMaxSize = 18; // Size of an ack packet

22

.isOverwriting = 1; // New is always better!

}

• ARStream audio data. (Only for newer models)
This buffers transports ARStream data.
{
.ID = 15

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = <arstream fragment maximum number>*2;

// Read from ARDiscovery.Discovery part !

.dataCopyMaxSize = <arstream fragment size>;

// Read from ARDiscovery.Discovery part !

.isOverwriting = 1; // New is always better!

}

• ARStream audio acks. (Only for newer models)
This buffers transports ARStream data.
{
.ID = 14

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 1000; // Enough space ...

.dataCopyMaxSize = 18; // Size of an ack packet

.isOverwriting = 1; // New is always better!

}

Device to Controller buffers

• Non ack data (periodic reports from the device).
This buffers transports ARCommands.
{
.ID = 127

.dataType = ARNETWORKAL FRAME TYPE DATA;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 20;

.dataCopyMaxSize = 128;

23

.isOverwriting = 1; // Periodic data: most recent is better

}

• Ack data (Events, settings ...).
This buffers transports ARCommands.
{
.ID = 126

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = 5;

.numberOfCell = 256;

.dataCopyMaxSize = 128;

.isOverwriting = 0; // Events should not be dropped

}

• ARStream video data.
This buffers transports ARStream data.
{
.ID = 125

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = <arstream fragment maximum number>*2;

// Read from ARDiscovery.Discovery part !

.dataCopyMaxSize = <arstream fragment size>;

// Read from ARDiscovery.Discovery part !

.isOverwriting = 1; // New is always better!

}

• ARStream audio acks. (Only for newer models)
This buffers transports ARStream data.
{
.ID = 123

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 1000; // Enough space ...

.dataCopyMaxSize = 18; // Size of an ack packet

.isOverwriting = 1; // New is always better!

}

24

• ARStream audio data. (Only for newer models)
This buffers transports ARStream data.
{
.ID = 124

.dataType = ARNETWORKAL FRAME TYPE DATA LOW LATENCY;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = <arstream fragment maximum number>*2;

// Read from ARDiscovery.Discovery part !

.dataCopyMaxSize = <arstream fragment size>;

// Read from ARDiscovery.Discovery part !

.isOverwriting = 1; // New is always better!

}

25

3.4.3 Rolling Spider, Hydrofoil, Airborne Night & Airborne Cargo

The Rolling Spider, the Hydrofoil, the Airborne Night and the Airborne
Cargo share the same buffer configuration:

Controller to Device buffers

• Non ack data (periodic commands for piloting).
This buffers transports ARCommands.
{
.ID = 10

.dataType = ARNETWORKAL FRAME TYPE DATA;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 1;

.dataCopyMaxSize = 18; // Maximum size of data on a ble characteristic

with a 2 byte header

.isOverwriting = 1; // Periodic data: most recent is better

}

• Ack data (Events, settings ...).
This buffers transports ARCommands.
{
.ID = 11

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = 5;

.numberOfCell = 20;

.dataCopyMaxSize = 18;

.isOverwriting = 0; // Events should not be dropped

}

• Emergency data (Emergency command only).
This buffers transports ARCommands.
{
.ID = 12

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = -1; // Infinite

.numberOfCell = 1;

26

.dataCopyMaxSize = 18;

.isOverwriting = 0; // Events should not be dropped

}

Device to Controller buffers

• Non ack data (periodic reports from the device).
This buffers transports ARCommands.
{
.ID = 15

.dataType = ARNETWORKAL FRAME TYPE DATA;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 0; // Unused

.numberOfRetries = 0; // Unused

.numberOfCell = 20;

.dataCopyMaxSize = 18;

.isOverwriting = 1; // Periodic data: most recent is better

}

• Ack data (Events, settings ...).
This buffers transports ARCommands.
{
.ID = 14

.dataType = ARNETWORKAL FRAME TYPE DATA WITH ACK;

.sendingWaitTimeMs = 0; // Deprecated

.ackTimeoutMs = 150;

.numberOfRetries = 5;

.numberOfCell = 20;

.dataCopyMaxSize = 18;

.isOverwriting = 0; // Events should not be dropped

}

27

4 ARCommands protocol

The ARCommand library is a simple codec for sending binary data on the
network.

4.1 Command identifier

The command is identified by its first 4 bytes:

• Project or Feature ID (1 byte)

• Class ID in the project/feature (1 byte)

• Command ID in the class (2 bytes)

In this document, commands are noted in the Project.Class.Command

notation. For example, the PCMD command, in class Piloting for project
ARDrone3 is ARDrone3.Piloting.PCMD.

4.2 Command arguments

The command arguments are directly packed after the command ID. Multi-
bytes values are sent in little endian to avoid bytes swap in the product.

Here is a list of the supported argument types:

4.3 Commands definition

Commands are defined in xml files. All the source code of the ARCommands

library is generated from these files.

The current xml files can be found in the <SDK>/libARCommands/Xml

directory.

In this directory, each .xml file correspond to a project or a feature. Each
product only understand a given list of features. Here is a list of features
implemented per product:

Note that implementing a features means that at least a subset of the
feature is useful for the product, not that all commands in the feature are
actually implemented!

28

https://github.com/Parrot-Developers/libARCommands/tree/master/Xml

Type Size (bytes) Description

u8 1 unsigned 8bit value
i8 1 signed 8bit value

u16 2 unsigned 16bit value
i16 2 signed 16bit value

u32 4 unsigned 32bit value
i32 4 signed 32bit value

u64 8 unsigned 64bit value
i64 8 signed 64bit value

float 4 IEEE-754 single precision
double 8 IEEE-754 double precision

string * Null terminated string (C-String)
(Variable size)

enum 4 Per command defined enum
Coded as i32 on network

Table 8: Supported types for ARCommand arguments

Product Features

Bebop Drone ARDrone3, Common

Jumping Sumo JumpingSumo, Common

Rolling Spider MiniDrone, Common

SkyController SkyController

Airborne Night MiniDrone, Common

Airborne Cargo MiniDrone, Common

Hydrofoil MiniDrone, Common

Jumping Night JumpingSumo, Common

Jumping Race JumpingSumo, Common

Table 9: Features implemented by each product

Also note that the xxx_debug.xml files contain debug commands that
should be avoided. These commands can change from one version to another
without notice, and can have unwanted behavior.

4.3.1 The SkyController case

The SkyController implements its own set of commands, even for common
ones, as it can be connected to another device. When a SkyController is con-
nected to a Bebop Drone, it will forward all ARDrone3.X.Y and Common.Z.W

commands to the Bebop Drone, and will forward to the controller all the
data coming from the Bebop (including the ARStream data.

29

4.4 Command attributes

While not tied to the ARCommand codec, certain commands can have other
xml attributes, namely buffer, timeout and listtype. These attributes
are given as hints for an implementer on how the command is intended to
be used.

4.4.1 buffer

The value of this attribute can be either NON_ACK, ACK or HIGH_PRIO, de-
faulting to ACK if not given. It gives a hint about the destination buffer for
the command.

For the Bebop Drone, the NON_ACK buffers are 10 (c2d) and 127 (d2c),
the ACK buffers are 11 (c2d) and 126 (d2c), and the HIGH_PRIO buffer is the
12 (c2d).

This is only a hint, and the product will decode any ARCommand on any
ARNetwork buffer, as long as the buffer is not used for ARStream.

4.4.2 timeout

The value of this attribute can be either POP, RETRY or FLUSH, defaulting to
POP if not given.

For acknowledged data, if a timeout happens (after the retries from
ARNetwork), there is three possible answers:

• POP: Pop the data from the fifo, and continue with the next data
(default).

• RETRY: Retry the data. This leads to infinite retries of the current
data.

• FLUSH: Flush the entire ARNetwork buffer. This can be useful if the
next data depends on the current one.

This information has no effect on non acknowledged data.

30

4.4.3 listtype

The value of this attribute can be either NONE, LIST or MAP, defaulting to
NONE if not given.

LIST commands are sent multiple times, and a list of all the received
value should be created. The ARController library uses a hash map with
a locally generated integer key to emulate this.

MAP commands are sent multiple times, and their first argument should
be used as a key in a map of received values.

In both cases, clearing the map/list before requesting the data is the
responsibility of the receiver, unless stated otherwise in a specific command
implementation.

4.5 Commands list

Listing all the commands in this document would be too long. The format
used in the .xml files is designed to be human readable, with inline comments
about every commands and arguments.

Some of the important commands are listed below.

4.5.1 Common.Settings.AllSettings &
Common.Common.AllStates

Normally, the product will send state and settings updates on the go. To
synchronize them, you will have to request a full snapshot of the settings
and the states of the product during the initialization.

When receiving these commands, the product will send all its settings
(or states), then it will send a final command, saying that all the settings or
state were sent.

The SkyController uses the SkyController.Settings.AllSettings and
SkyController.Common.AllStates commands instead.

31

Request Final answer

Common.Settings.AllSettings Common.SettingsState.AllSettingsChanged

Common.Common.AllStates Common.CommonState.AllStatesChanged

SkyController.Settings.AllSettings SkyController.SettingsState.AllSettingsChanged

SkyController.Common.AllStates SkyController.CommonState.AllStatesChanged

Table 10: Final command for each Settings/State request

4.5.2 Common.Common.CurrentDate &
Common.Common.CurrentTime

These commands set the date/time on the product, which in turn is set into
the media and PUD (for ARDrone Academy files.

The argument to these commands is an ISO-8601 formatted string, with
the following formatters:

• "yyyy-MM-dd" for Common.Common.CurrentDate. Ex: 2015-08-27.

• "’T’HHmmssZZZ" for Common.Common.CurrentTime. Ex: T101527+0200.

For compatibility purposes, you should always sent both commands to
the product, not juste the Common.Common.CurrentDate one. The order is
irrelevant on newer firmwares, but older ones need the Common.Common.CurrentTime
to be sent after.

Note that you should generate both strings from a single timestamp to
avoid any loop error at midnight.

4.5.3 ARDrone3.MediaStreaming.VideoEnable &
JumpingSumo.MediaStreaming.VideoEnable

These commands will enable or disable the video streaming from the prod-
uct. When connecting, the streaming is disabled (which lets a high band-
width to transfer all the data needed by the Common.Settings.AllSettings
and Common.Common.AllStates commands). You should enable the video
only when needed (when you actually display it !).

In FreeFlight, the video is also disabled in the following cases:

• When the user browses the internal memory of the drone.

• When the user downloads media from the drone.

32

https://en.wikipedia.org/wiki/ISO_8601

• When the user sends an update file to the drone.

4.6 Using the ARCommandsParser to generate your own
code

The code generator is split into a parser, and a generator part. The parser
is written in Python, and can be found in the ARSDKBuildUtils repository:
<SDK>/ARSDKBuildUtils/Utils/Python/ARCommandsParser.py

It defines a parseAllProjects function, which takes 4 arguments:

• projects: A list of strings, list of the projects to parse. If this list
contains the “all” string, then all projects are parsed, regardless of the
content of the other elements.

• pathToARCommands: The path to the ARCommands library root (not
the Xml directory !)

• genDebug: if True, then the xxx_debug.xml files are also parsed. De-
faults to False. Should not be used

• mergeDebugProjectsInReleaseProjetcs: if True, then the debug com-
mands will be merged with the release commands in single projects
instead of being in separated debug projets. Defaults to False. Should
not be used

And returns a list of ARProject objects. This class (and all other inter-
nally used class) are fairly straightforward to understand, and thus are not
described in depth here.

A simple example of iterating on all commands can be seen at lines
519-554 of <SDK>/libARCommands/Xml/generateLibARCommands.py

33

http://github.com/Parrot-Developers/ARSDKBuildUtils/blob/master/Utils/Python/ARCommandsParser.py
http://github.com/Parrot-Developers/libARCommands/blob/master/Xml/generateLibARCommands.py

5 ARStream protocol

The ARStream library is designed to send and receive arbitraty binary streams
using ARNetwork as its network back-end. It is used to transport live audio
and video data between the product and the controller.

The ARStream library used an acknowledge system on Bebop Drone
firmwares before 2.0.17, while the Jumping Sumo never used them. This
feature won’t be used on newer firmwares (for all products), so implement-
ing it is optionnal for an ARStream compatible library.

The ARStream library is not designed to be used on BLE networks.

5.1 Terminology

ARStream was designed to transport video data, thus the terms used in this
documentation will match some video terms.

The input of ARStream is a frame. A frame can be a single video frame
(for video streams), or multiple audio samples joined togeter (for audio
streams). Each frame is also tagged as an FLUSH_FRAME or not.

FLUSH_FRAMES are mapped on I-Frames for h.264 stream (e.g. on Bebop
Drone). It is always set for MJPEG (e.g. Jumping Sumo) and audio streams,
as these do not have the I-Frame/P-Frame difference.

5.2 Data

When sending a frame, it may be divided in multiple fragments on the
network. The size and the maximum number of fragments are negociated
during the ARDiscovery Connection part.

The data sent to ARNetwork consists of a packed header followed by the
fragment.

The header format is:

• frameNumber (2 bytes): Identifier of the frame, if two fragments have
the same frame number, they belong to the same frame. This counter
loops every 216 frames.

34

• frameFlags (1 byte): A bitfield indicating flags for the frame. Cur-
renlty only support the FLUSH_FRAME flag in bit 0.

• fragmentNumber (1 byte): The index of the current fragment in the
frame.

• fragmentsPerFrame (1 byte): The total number of fragments in the
frame.

The size of the data is not specified, as it can be derived from the size of
the ARNetwork data. The offset is not specified as the library consider that
the N th fragment should go at index arstream fragment size ∗N (i.e. the
library uses only full size fragments, except for the last one which can be
shorter).

Fragments can be received in any order, or even multiple time each. All
implementations should accept these cases and keep working. (i.e. do not
append data to the output buffer without reading the header!)

A frame is considered as complete once we receive all of its fragments.
If we receive a fragment for frame N + 1 while the frame N is not complete,
then we discard the N th frame and start working on the new one.

FLUSH_FRAMEs are frames that can be immediately decoded. To re-
duce latency, FLUSH_FRAMEs should flush any other waiting frame from the
pipeline (including any fifo between ARStream and a video decoder). This
behavior is also implemented on the ARStream sender on the product: if a
new FLUSH_FRAME is available, but some previous frame were not sent, these
frames are flushed and the new one is sent instead.

5.3 Acknowledges

ARStream acks are deprecated and are no longer enabled on most prod-
ucts. The description here is only for compatibility with older Bebop Drone
firmwares.

ARStream ack policy is controlled by the arstream_max_ack_interval

parameter, negociated during the ARDiscovery Connection. Most product
will send a value of −1, which means that no acks are to be sent. Possible
values are:

• −1 (or other negative value): No ack at all

• 0: No periodic acks, but send ack when receiving a fragment

35

• > 0: Maximum time (in ms) between two acks. Typically this is done
by having a thread sending periodic acks. To keep ack latency as low
as possible, keep also sending acks when receiving a fragment.

The Acknowledge packet has the following format (packed in memory,
so no gap inside the structure):

• frameNumber (2 bytes): Id of the frame (must match the current send-
ing frame).

• highPacketsAck (8 bytes): Bitfield for the upper 64 fragments of the
frame.

• lowPacketsAck (8 bytes): Bitfield for the lower 64 fragments of the
frame.

To acknowledge a fragment, the corresponding byte in the 128bits bitfield
is set, when all fragments bits are set, then the full frame is acknowledged.
This structure limits the maximum number of fragments to 128, but the
current frimwares only use 4 at most.

When sending a full ack, it may be useful to set all the bits (even the
ones for unused fragment numbers) in the bitfield. This allow the ARStream

late-ack algorithm to work.

36

	Purpose of this document
	Conventions
	Data endianness

	ARDiscovery protocol
	Discovery
	Wifi
	BLE

	Connection
	Wifi
	BLE

	ARNetworkAL protocol
	Wifi
	Data types
	Target Buffer IDs
	Sequence number
	Multiple frames in one packet
	Disconnection detection

	BLE
	Data types
	Characteristic IDs
	Sequence number

	ARNetwork protocol
	Definition of a Buffer
	Internal buffers
	Acknowledge buffers
	Per device buffers
	Bebop Drone & SkyController
	Jumping Sumo, Jumping Night & Jumping Race
	Rolling Spider, Hydrofoil, Airborne Night & Airborne Cargo

	ARCommands protocol
	Command identifier
	Command arguments
	Commands definition
	The SkyController case

	Command attributes
	buffer
	timeout
	listtype

	Commands list
	Common.Settings.AllSettings &Common.Common.AllStates
	Common.Common.CurrentDate &Common.Common.CurrentTime
	ARDrone3.MediaStreaming.VideoEnable &JumpingSumo.MediaStreaming.VideoEnable

	Using the ARCommandsParser to generate your own code

	ARStream protocol
	Terminology
	Data
	Acknowledges

